1. Name of Course: Stochastic models
2. Lecturer: Gábor Pete 
3. No. of Credits              and no. of ECTS credits
4. Semester or Time Period of the course: 12 weeks, followed by a couple of sessions of student presentations
5. Prerequisites: Should be able to state the Weak and Strong Laws of Large Numbers and the Central Limit Theorem, and should know the definition of a martingale and a Markov chain.

6. Course Level: introductory PhD
7. Brief introduction to the course and

8. The goals of the course:
Probability theory is a young and rapidly developing area, playing an increasingly important role in the rest of mathematics, in sciences, and in real-life applications. The goal of this course is to introduce a variety of probabilistic models, motivated by statistical physics, computer science, combinatorics, group theory, game theory, hydrodynamics, and social networks.

9. The learning outcomes of the course: 

Students will get acquainted with some of the most popular models studied in modern probability theory, will see how probability interacts with other branches of mathematics and other sciences, and hence will have an idea of what other disciplines may expect from probability. On the way, they will learn to use some fundamental probabilistic techniques in different settings.
10. More detailed display of contents. 

Here is the week-by-week plan of the course. The fundamental theorems will always be proved, but some more advanced results may just be stated, in order to give a flavor of the area despite the time constraints.
1. Pólya’s theorem (1920): random walk on Z^2 is recurrent, while transient on Z^d for d>2. Return probability after n steps (heat kernel decay): n^{-d/2}. Use of Stirling’s formula, the Central Limit Theorem, and a Large Deviations bound.

2. Return probabilities on the d-regular tree T_d, by computing the radius of convergence of Green’s function. Speed of random walk on transitive graphs exists, and is positive on T_d. Notion of Cayley graphs of groups.
3. Martingales and discrete harmonic functions. Liouville property for bounded harmonic functions: yes for recurrent graphs and Z^d and lamplighter groups over Z and Z^2; no for T_d and lamplighter groups over Z^d, d>2. Stating the Kaimanovich-Vershik theorem (1983) on equivalence of Liouville property and zero speed.

4. Electric networks and discrete potential theory. Dirichlet energy and transience. Amenability of groups: geometric characterization (Følner 1955) and using random walks (Kesten 1959). Exponential growth does not imply non-amenable: lamplighter groups. Quasi-isometry invariance of transience, growth and amenability.
5. Different notions of mixing time of random walks on finite graphs. Spectral methods, couplings, the effect of the geometry of the underlying space.
6. Defining expander graphs, construction by a random graph model. The Erdős-Rényi (1960) graph model. Standard coupling. Notion of phase transitions. First and second moment method for containing a triangle.
7. Galton-Watson trees. Criticality using generating functions, martingales, recurrence of contour random walk. Application to n^{2/3} cluster sizes in critical Erdős-Rényi graph. Barabási-Albert graph model. Random graphs converging locally to random trees.
8. Percolation on infinite graphs. Harris-FKG inequality. Self-duality, contours, 1/3 < p_c(Z^2) < 2/3, Russo-Seymour-Welsh estimates, stating conformal invariance. Application to the game of random turn hex.
9. Uniqueness of infinite cluster on amenable groups (Burton-Keane argument). Benjamini-Schramm conjectures (1996). Stating the Benjamini-Lyons-Peres-Schramm theorem (1999): critical percolation dies out on non-amenable groups. Yu Zhang’s proof  of p_c(Z^2) <= 1/2.

10. Ising and Potts(q) models, Gibbs measures. Fortuin-Kasteleyn random cluster models, Edwards-Sokal coupling, Glauber dynamics, FKG inequality, stochastic domination. Infinite cluster in the FK model determines the phase transition in the   Potts model. 
11. Heisenberg O(n) model, Vicsek’s flocking model. Self-organized criticality in sandpile models.

12. Interacting particle systems: simple exclusion and growth processes. Combinatorics and hydrodynamics, couplings and graphical constructions. Connections to random matrix theory.
Books:
· Geoffrey Grimmett. Probability on graphs. Cambridge University Press, 2010. http://www.statslab.cam.ac.uk/~grg/books/pgs.html
· Remco van der Hofstad. Random graphs and complex networks. Book in preparation. http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf
· David Levin, Yuval Peres, Elizabeth Wilmer. Markov chains and mixing times. Amer. Math. Soc., 2008. http://pages.uoregon.edu/dlevin/MARKOV/
· Russ Lyons with Yuval Peres. Probability on trees and networks. Book in preparation, to appear at Cambridge University Press. http://mypage.iu.edu/%7Erdlyons/prbtree/prbtree.html
· Gábor Pete. Probability and geometry on groups. Book in preparation. PGG.pdf
Teaching format: lectures combined with classroom discussions.
11. Assessment: 
25%
Homework problems to be handed in at the end of the 4th week.
25%
Homework problems to be handed in at the end of the 8th week.
50%
A 30 minutes presentation of a short book section or research article, chosen freely from a list I will assemble, plus a homework problem related to the presentation. To be delivered after the end of the lecturing period, a few students at a time.
12. Contact: Office hours to be announced. Can always ask through email: gabor at math dot bme dot hu. The course will have a webpage.
